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A phenomenological method is applied to the p trajectory. I t is argued that once the intercept is known, 
the method is expected to give reliable information about the trajectory in the region of interest for high-
energy scattering. Solutions for different values of the intercept ranging from 0.3 to 0.8 are given. From 
certain general requirements the higher intercepts seem to be favored. 

IN a previous paper, we presented a phenomenological 
method for calculating Regge trajectories.1 The ap

proach was based on the real-analyticity and threshold 
behavior as well as on the available experimental in
formation, and the first application was to the Pomer-
anchuk trajectory. It is our purpose in this paper to 
obtain by the same approach the approximate form 
for the p trajectory. 

Our starting point is a four-parameter ansatz for the 
imaginary part of the trajectory function a(t), namely, 

and 
Ima(t) = Cv*/ZC1+(C2-v¥l for iC>0, 

Ima(/) = 0 for v<0, (1) 

where v=\(t—h), and /o=4»?T
2=4. Using the usual 

dispersion relation for a, we have 

Rea(p)=a(v= —1)-
C(H-l) 

XP[ — 
v'Hv' 

(/-v)[d+(C2-.)2](/+l) 
(2) 

where for convenience we have made the subtraction at 
v= — l, the point corresponding to the forward direc
tion in the crossed channel. This integral can be 
evaluated by applying Cauchy's theorem to Eq. (1). 
The result is 

a(v) — a(v— — 1) — 

X 

(y+l)C 

sin^X 

I (v+l)[C1+(C2- J;)
2] (a-b)(a+l)(p-a) 

bxe~i7r* 1 

(b-a)(b+l)(v-b) 0>+l)[CrHC2+l)2]J 

where 

a=-C2+i(Ciyt\ and ft=--CV-*(Ci)l/1i. 

(3) 

In Eq. (3), the four parameters X, C, Ci, and C2 are 
determined with the help of the four conditions 

(i) 

00 r,=(-

o ( » ) = - l , 

Ima(t) 

[rfReaCO/dW*-' t=*m0 

100 MeV, 

(see Ref. 2), 

(iii) X=aO= 0)+J , (see Ref. 3), 

and 

(iv) Rea(/=f»p
2)=l. 

These conditions, when imposed on Eq. (3), and when 
a(v= — 1) is known, determine the four parameters. The 
solution was found with the help of the IBM 7094 
computer of the Lawrence Radiation Laboratory. Since 
the intercept value a(v= — 1) is not well known, we 
take a range of values from 6.3 to 0.8 and attempt to 
choose the most plausible solution among them. We 
should also mention that condition (i) is questionable. 
All that is known is that a(°o)<l . However, taking 
a(oo) = 0, for example, makes not too significant a 
change in the general features of trajectory in the region 
— 10wr

2<^<10m,r2. Figure 1 shows Rea versus v for 
intercepts of 0.3 to 0.8, and for the sake of comparison, 
Rea for the Pomeranchuk trajectory of Ref. 1 is also 
given. 
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FIG. 1. Rea versus v for intercepts of 0.3 to 0.8. The dashed 
* Work done under the auspices of the U. S. Atomic Energy curve is Rea versus v for the Pomeranchuk trajectory given in 
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TABLE I. Values of Ci, C2, X, and C. 

FIG. 2. Ima versus v corresponding to the curves in Fig. 1. The 
intercept values are indicated on these curves. 

Figure 2 is a plot of the corresponding Ima. It is seen 
from these curves that for smaller intercepts the imagi
nary part of a has a sharper maximum and Rea reaches 
a higher maximum value. In particular, for the small 
intercepts, the solution gives rise to a spin-3 recurrence 
of a width narrow enough to be experimentally observ
able. These features are examined in Figs. 3, 3 (a) show
ing the relation between the intercept and the width 
TR of the spin-3 recurrence, and 3(b) showing the rela
tion between the mass and the width of the spin-3 
recurrence. It is clear from Fig. 3(b) that if such a recur
rence exists at all, its mass should be smaller than 2 BeV 
so an experimental search may be correspondingly re
stricted. Once the mass is experimentally known, the 
width is predicted by this curve. Figure 3(c) gives the 
slope of the trajectory at t = 0 versus the intercept value. 
The position and the width of the spin-3 recurrence are 
given as running parameters. If the fact that no recur
rence has been found is interpreted to mean that the 
width is too large to have been observed, then the higher 
intercepts of 0.7 to 0.8 are favored. We should mention 
that the solution with intercept of 0.7 and slope 
(da/dt)t=o~0.44 BeV~2 is in fair agreement with the 
results of Scotti and Wong4 concerning the low-energy 

o ( y = - l ) 

0.3 
0.4 
0.5 
0.6 
0.7 
0.8 

Ci 

6.798 
11.99 
23.38 
67.98 

173.8 
766.9 

Pomeranchuk 
1.0 259.7 

c2 
20.26 
24.04 
29.29 
37.06 
49.53 
72.73 

55.24 

X 

0.8750 
0.9670 
1.058 
1.148 
1.2373 
1.3256 

1.533 

C 

5.443 
5.928 
6.550 
8.478 
9.669 

13.31 

3.79 

nucleon-nucleon scattering and with the results of 
Brandsen et al.s concerning the strip approximation in 
7T—7r scattering. Also this solution gives essentially the 
same slope as the Pomeranchuk trajectory (see Fig. 1). 
Finally, Table I gives the values of the parameters C, 
Ci, C2, and X. 

In conclusion, we should like to make a few remarks 
about the sensitivity of our results to the conditions (i) 
and (ii). If we replace condition (i) by a(oo) = — 2, the 
solution for Rea in the region — lOrn*2 < v < 10mx

2 

changes very little; however, TR, MR and Reamax 
change considerably (TR gets smaller, MR and Reamax 

get bigger). In condition (ii), Tp is not experimentally 
known very accurately. If we choose Tp=80 MeV, say, 
then again TR, MR, and Reawx change considerably 
(TR gets smaller, MR and Reamax get bigger). Here 
again, Rea and its derivative change very little in the 
region — 10w7r

2<v<10w7r
2. Consequently, once the 

intercept is known, our treatment is expected to give 
reliable information about the trajectory in the region 
— 10T

2<v<10mr
2. This is the region of interest in 

high-energy scattering. 
From the present calculation based on conditions 

(i) and (ii), we have seen that higher intercepts are 
favored. On the other hand, as pointed out by Phillips,6 

if the p exchange is to play a dominant role in np charge 
exchange scattering then the experiment of Palevsky 
et a/.,7 who measured the energy dependence at t=0, 

F I G . 3. (a) I\R versus 
a(v= — 1). (b) TR versus MR. 
(c) da/dt(t=0) versus a(*=0). 
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would require an intercept of about 0.3. This value is 
in sharp conflict with the higher intercepts of 0.7 and 
0.8, which we have favored here. 

Recently, Abolins et al.8 have reported evidence for a 
resonance at 1.22 BeV that may have the same spin 
and quantum numbers as the p. If so, there would be a 
second p trajectory with a smaller intercept aU = 0 than 
the first. The combined result might be an "average" 

8 M. Abolins, R. L. Landers, W. A, W. Mehlhop, Nguyen-him 
Xuong, and P. M. Yager, Physics Department, University of 
California at San Diego, La Jolla, California, September 1963 
(unpublished). 

I. INTRODUCTION 

THE concept of the strongly interacting particles 
as self-consistent bound states has been applied 

in an earlier paper1 to a study of the deviations from 
SUz symmetry in a model containing only vector 
mesons. We shall discuss here, on the same basis, a 
more realistic model in which several kinds of particles 
enter. We shall make use of the following points which 
were discussed in detail in our previous work. We begin 
with a self-consistent set of particles which incorporates 
full symmetry, so the search for additional sets of self-
consistent particle masses can be carried out through 
calculations which make use of the techniques of 
ordinary perturbation theory. If a first-order perturba
tion having a particular transformation character ap
proximately reproduces itself, there will be another 
self-consistent set of particles with a small dissymmetry 
of the given type; the magnitude of this dissymmetry 
is then fixed by the self-consistency requirement, but 
depends on the higher order terms. Moreover, if this 

* Present address: Department of Technical Physics, Finland 
Institute of Technology, Otaniemi, Finland. 

1 R. E. Cutkosky and Pekka Tarjanne, Phys. Rev. 132, 1888 
(1963), hereafter cited as I. The present paper contains addi
tional references. 

intercept of about 0.3 as required by the experiment 
of Palevsky el al.7 (If the resonance at 1.22 BeV has 
spin 3 and is the recurrence of the p, it would roughly 
fit into our solution with the intercept of 0.5.) 
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self-generating dissymmetry corresponds to a (1,1) 
(or 8-fold) tensor, general characteristics of the higher 
order terms imply the necessary maintenance of iso-
topic spin symmetry. In the vector-meson model, our 
estimates of the effects of perturbations did indeed 
favor the (8) dissymmetry, and we shall show that 
the same result is obtained here as well. 

It is sufficient for us to consider here only perturba
tions which retain isotopic spin invariance, because in 
first order only the S£/Vmultiplet character of the 
perturbation is relevant, and because of the fact that 
a self-consistent (8) perturbation necessarily retains 
SU2 invariance. The normalized charge-independent 
mass deviations in the baryon octuplet are listed in 
Tables I and II for the possible dissymmetries, 

Our attention in this paper will be given mainly to 
the baryon states, but we first remark on the inter-

TABLE I. Mass deviations in octuplets. 

Y, T 

(8) + 
( 8 ) -
(27) 

i , i 
1 

- 1 
3 

0,1 

- 2 
0 

- 1 

0 , 0 . 

2 
0 

- 9 

~ i , i 
1 
1 
3 

Normal
ization 

2 (5)1* 
2 

2 (30)*/2 
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The mass splittings within the (unitary) supermultiplets of the strongly-interacting particles are studied 
in the octuplet model of SUs symmetry. Using arguments based on the requirement of dynamical self-
consistency, qualitative properties of the first-order perturbations in masses and coupling constants are 
studied in the ladder approximation. Further evidence for the origin of the particular type of dissymmetry 
leading to the Gell-Mann-Okubo mass formula and to isotopic spin symmetry is gotten through the relations 
between the dynamical effects in different supermultiplets. The observed mass splittings in the pseudoscalar 
meson, vector meson, and the f ( + ) baryon octuplets, as well as in the f ( + ) baryon decuplet, are compatible 
with the general features expected from first-order perturbations. Some higher order perturbations in the 
f ( + ) decuplet are also discussed. 


